
BSc (Hons) Computer Science (Artificial Intelligence)
Academic Year 2018 - 2019

A Decentralized Computation Platform

Lucy Sweet

April 2019

A report submitted in partial fulfillment of the requirements for the degree of
Bachelor of Science

Abstract

Traditionally, decentralized computation systems suffer from draw-
backs in efficiency, making them hard to apply to any practical problem.
We attempt to fix this with a new algorithm that uses psuedo-random
selection to delegate expensive problems to a subset of the nodes. We
introduce a novel algorithm for quickly gaining consensus across a set of
nodes as to a large list known as Broadcast Consolidate Resolve Affirm
and a novel algorithm for creating a random number among many non
trusted nodes called Multiparty Pin Seeding. We show that this is much
faster than the state of the art.

Copyright c© Lucy Sweet 2019. All rights reserved.

1

Contents

Contents 2

1 Acknowledgments 5

2 Declaration 5

3 Introduction 6
3.1 On the Byzantine General’s Problem and Decentralized Systems 6
3.2 From currency to computation 6
3.3 Performance pain . 7

3.3.1 Room to Grow . 7
3.4 Aims and Objectives . 8
3.5 Project Approach . 8

3.5.1 Literature Review . 9
3.5.2 Algorithm Design . 9
3.5.3 Proof in Theory . 9
3.5.4 Implementation Design 9
3.5.5 Algorithm Implementation 9
3.5.6 Overall Review . 9

4 Background 10
4.1 The need for Byzantine Fault Tolerance 10
4.2 Fault Tolerant Data Structures 10

4.2.1 Blockchain . 10
4.2.2 The Tangle . 11
4.2.3 Block-Lattice . 12

4.3 Approaches to consensus agreement 12
4.3.1 Traditional . 12
4.3.2 Algorand . 13

4.4 Consensus agreement systems . 13
4.4.1 Proof of Work . 13
4.4.2 Proof of Space . 14
4.4.3 Proof of Authority . 14
4.4.4 Proof of Stake . 15
4.4.5 Delegated Proof of Stake 15

4.5 Summary of Literature Review 16

5 Project Approach 16
5.1 Algorithm Design . 16
5.2 Validation in Theory . 16
5.3 Application Design . 16
5.4 Validation in Practice . 17
5.5 Overall Review . 17

2

6 DScript Protocol 17
6.1 Delegated Proof of Stake . 17

6.1.1 Conflict Resolution . 17
6.2 Block-Lattice . 18
6.3 Representative Population Sampling 18
6.4 Representative Committee . 18
6.5 State Transition Agreement . 19
6.6 BCRA . 19

6.6.1 Overall Goal . 19
6.6.2 Broadcast . 20
6.6.3 Consolidate . 20
6.6.4 Resolve . 20
6.6.5 Affirm . 20
6.6.6 Automation . 21

6.7 Multiparty Pin Seeding . 22
6.7.1 Threshold and Pin Finality 23
6.7.2 0.6 Threshold . 23

6.8 Lightweight Distributed Database 24
6.8.1 Direct Fetching . 25
6.8.2 Indirect Finding . 25

6.9 Execution Delegation . 26
6.9.1 The simple approach . 26
6.9.2 The approach taken . 27

6.10 Execution . 29
6.10.1 Deterministic Distributed Language 29
6.10.2 Anatomy of a Decentralized Application 30
6.10.3 Cost . 31
6.10.4 Gossip . 32
6.10.5 Execution by the Committee 33
6.10.6 Extra Instructions . 34

7 DScript Java Client 35
7.1 Networking . 36

7.1.1 Cluster . 36
7.1.2 Message . 36
7.1.3 Application . 36

7.2 Cryptography . 37
7.2.1 Encryption . 37

7.3 Bootstrapping . 37
7.4 Interface . 38

7.4.1 Web Panel . 38
7.5 Caveats . 40

3

8 Evaluation 40
8.1 Committee Consensus Performance 40
8.2 Committee Consensus Security 40
8.3 BCRA Performance . 41
8.4 BCRA Security . 42
8.5 Multiparty Pin Seeding Performance 43
8.6 Multiparty Pin Seeding Security 45

8.6.1 Unpredictable output . 45
8.6.2 Bit Threshold . 46

8.7 Overall Security . 47
8.8 Overall Performance . 50
8.9 Network Performance vs Ethereum 50
8.10 Network Security vs Ethereum 52

9 Conclusion 55
9.1 Future Work . 57

9.1.1 Verifiable Random Proofs 57
9.1.2 Privacy . 58

10 Appendix A - Personal Reflection 63
10.1 Reflection on Project . 63
10.2 Personal Reflection . 63

11 Appendix B - Licenses 64

12 Appendix C - Ethical Approval 65

4

1 Acknowledgments

Thank you to Panos Louveris, whose guidance and insight have helped guide
this project and ensured that it remains on track and focused.

Thank you to Pascal Terjan and Google UK for their insight and thoughts
on this project that allowed me to identify and solve hard questions that arose.

Thank you to Google for the support given to me over this academic term,
particularly through the Google Europe Scholar Program and Google Applica-
tion Security, Vulnerability Research Grants program.

This work is inspired by the work of Colin LeMahieu in his development of
the Nano cryptocurrency, which has pushed forward in leaps and bounds the
speed and scalability of cryptocurrency to real world applications.

The DScript Java Client uses third party packages. All packages are used
under license and the licenses for these packages are given in Appendix A.

2 Declaration

I certify that the work presented in this dissertation is my
own unless referenced or acknowledged otherwise.

Lucy Sweet
Signature

Date

5

3 Introduction

3.1 On the Byzantine General’s Problem and Decentral-
ized Systems

The Byzantine General’s Problem (Lamport, Shostak, and Pease
1982) is a fundamental problem for distributed computing applica-
tions that do not trust a single party or handful of parties (”decen-
tralized” systems). In crypto-currencies, this problem manifested
itself in the Double Spend problem. The Double Spend Problem is
a problem caused when a malicious party spends the same balance
on two separate things, the network has to come to a consensus as
to which transaction will be rejected and which transaction will be
accepted.

Traditionally, this problem was solved with centralization through
use of a central server that verified whether a token was spent (Ryan
2006). This however created a single point of failure for both denial
of service and nefarious actors to influence the network. The first de-
centralized solution to this problem came from ”Satoshi Nakamoto”
in their 2008 whitepaper for Bitcoin (Nakamoto et al. 2008). Bit-
coin solves the double spend problem and gains consensus across
the network through the use of a chain of blocks linked together by
hash references to each previous block (a ”Blockchain”) and an al-
gorithm that requires computational power be expended to include
a new block through forcing a user to perform many thousands of
SHA256 computations searching for a value that has a certain ”dif-
ficulty”.

3.2 From currency to computation

Bitcoin was the first network to solve the Double Spend problem
and gain Byzantine Fault Tolerant consensus through a Proof of
Work Blockchain. Other networks soon followed, notably in our
case, Ethereum. Ethereum was created by Vitalik Buterin in 2014
as a new cryptocurrency designed to allow the creation of appli-
cations on the network, also known as ”decentralized applications”
or ”dApps” (Wood 2014). Ethereum introduces the Ethereum Vir-
tual Machine (”EVM”) designed with the overarching goal of de-
terministic execution. It is the fundamental consensus mechanism
for decentralized applications on Ethereum. Ethereum decentral-

6

ized applications are written as ”Smart Contracts”. While smart
contracts can be written in a variety of languages, such as Solid-
ity (Dannen 2017) all smart contracts are eventually represented as
EVM byte-code. These contracts are then included on the Ethereum
blockchain. When a user wants to use a smart contract, they take
the current state of the contract and their input and submit these
as a transaction to the blockchain. In order for a client to verify the
block this transaction is referenced in, they must take these inputs
and the current state, and calculate the outputs for the block.

3.3 Performance pain

In Ethereum, all smart contracts are stored on the same blockchain,
and each node must execute all the state transitions within a block
to validate it. This has high Byzantine Fault Tolerance, however, it
is incredibly inefficient, particularly as every client must run every
program. To show how serious of a deficiency in performance this
can be we can turn to a practical example of Ethereum’s perfor-
mance versus centralized processors. In October 2018 the Ethereum
Network could process a maximum of approximately 15 transactions
per second whereas the Visa network was processing an average of
45,000 transactions per second at the same time (Murphy 2018).

3.3.1 Room to Grow

In 2017 Vitalik Buterin, the creator of Ethereum, and Joseph Poon,
one of the co-author’s of the Bitcoin Lightning Network whitepaper
(Poon and Dryja 2016) proposed a solution to the performance bot-
tleneck called ”Plasma” (Poon and Buterin 2017). In Plasma, trans-
actions are separated into ”child” blockchains that are split from
the ”main” blockchain to attempt to reduce the load on the main
blockchain. However, this proposal however has so far failed to con-
clusively prove its own viability, with Vlad Zamfir, Ethereum’s Lead
Researcher on Proof of Stake, questioning the viability of Plasma
(Hertig 2017).

Research Question Space exists for a solution that brings the abil-
ities of Ethereum in execution of Decentralized Turing complete
applications while avoiding the pitfalls of performance bottlenecks.

7

Our question is therefore whether we can improve the performance
of the state of the art while broadly maintaining its security.

3.4 Aims and Objectives

Our aim is as follows:
To create a protocol and application that allows the ex-

ecution of Decentralized Applications (”dApps”) with im-
proved performance over the state of the art.

In order to achieve this aim, we must complete the following
objectives:

1. Undertake a background study to identify existing work, iden-
tify the systems used by the state of the art and identify the
caveats in performance of the state of the art.

2. Identify an approach which will give us results from which we
can draw rigorous conclusions.

3. Design an algorithm that allows a decentralized network of un-
trusted nodes to come to consensus around the end state of a
state transition machine given a start state and input and that
has a performance improvement over the state of the art.

4. Design and implement software that shows the algorithms de-
scribed above in operation and shows the viability of the algo-
rithms in a solution.

5. Demonstrate the security of the algorithms described above
through empirical evaluation of such.

6. Demonstrate the performance improvements of the algorithms
described above versus the state of the art through empirical
evaluation of such.

7. Evaluate the success of this project based on the security and
performance of the algorithms as described above.

3.5 Project Approach

I will approach my project by identifying five significant steps I must
take.

8

3.5.1 Literature Review

I must undertake a study to identify existing work and the systems
used by the state of the art. Particularly this study will allow me to
identify systems designed by others which may be able to be applied
to my problem in order to advance the state of the art. Further, this
study will allow me to identify the caveats of the state of the art so
that I may better focus my efforts.

3.5.2 Algorithm Design

I must design an algorithm or set of algorithms for the solving of the
aim described above. These algorithms should be more efficient and
faster than the state of the art but maintain high byzantine fault
tolerance.

3.5.3 Proof in Theory

I must prove that the algorithms I have designed are in theory an
improvement on the state of the art while also preserving the security
necessary for such a network.

3.5.4 Implementation Design

I must design a software solution that implements the algorithms
on a public network communicating over the internet.

3.5.5 Algorithm Implementation

I must implement the algorithms in a software package and demon-
strate that the algorithms are practically viable and work in soft-
ware.

3.5.6 Overall Review

I must review and evaluate the outcomes of the approach described
above, particularly looking at results gained and what could be im-
proved.

9

4 Background

4.1 The need for Byzantine Fault Tolerance

Byzantine Fault Tolerance is the ability of a computer system to
prevent itself from falling victim to the Byzantine General’s Problem
(Lamport, Shostak, and Pease 1982). First discovered by Robert
Shostak and dubbed the Interactive Consistency Problem (Wensley
et al. 1978), the problem exhibits itself in computer systems that
can not tolerate byzantine faults. Byzantine faults are faults where
components fail and there is imperfect information as to whether a
component has failed. In distributed systems, a Byzantine Fault can
occur when any one of the nodes exhibits failure induced accidentally
or by an attacker that causes it to act in a way that it is not meant to.
This can lead to the network losing consensus as to a fact or changing
its decision unilaterally. In Cryptocurrencies, this can exhibit itself
as the Double Spend problem. The Double Spend problem is a
fundamental problem of consensus across a decentralized system,
where many nodes need to agree as to when some money is ”spent”
on a transaction or not. If the Double Spend problem is not solved,
than the system cannot come to any sort of global ”state” and so is
rendered critically vulnerable to attack.

4.2 Fault Tolerant Data Structures

Many centralized systems have been proposed to gain fault toler-
ance, but as we are creating a decentralized distributed system, we
will not be discussing those as they are not useful to us, instead we
will focus on the decentralized data structures that are byzantine
fault tolerant.

4.2.1 Blockchain

Nakamoto et al. 2008 proposed the first decentralized fault tolerant
data structure known as the Blockchain. The system works by us-
ing the hash of some previous content as a time-stamp, and then
including this in a newer set of content as a pointer to the previous
set, Nakamoto says:

The timestamp proves that the data must have existed at
the time, obviously, in order to get into the hash.

10

These pieces of content each reference the last piece of content before
them through this ”timestamp” made of the hash of the last piece
of content content can be formed together as a chain. Nakamoto
then introduces an agreement system to allow the network to only
agree to a single valid chain, in the case of Nakamoto et al. 2008
this is done through a simple Proof of Work system based on a goal
of causing as many zero bits as possible at the start of a SHA256
hash. Agreement systems will be discussed in more detail later.

4.2.2 The Tangle

In Popov 2016 Sergie Popov introduced a novel data structure called
the ”Tangle”. The tangle is a directed acyclic graph where each
vertices represents a transaction and each edge represents an ”ap-
proval”. Each vertices is further attached to at least two previous
vertices and is said to ”approve” these vertices (this means that each
new vertices is the approver of at least two previous vertices and will
be approved by future vertices). A transaction is valid if the vertices
itself contains a valid transaction and the edges connecting it to pre-
vious transactions (it’s approvals) are also valid. This means that,
for every valid transaction, every edge from that transaction refer-
ences another valid transaction, or the genesis transaction (which is
the single vertices at the start of the graph). Once a vertices is refer-
enced by many future vertices it is considered agreed to, to consider
why it is agreed to we should consider the nature of the vertices
within the graph and what it demonstrates. The vertices in the
graph demonstrates that a transaction took place. Say an attacker
wishes to double spend, they may create two vertices spending the
same amounts, they could append them to the graph and they would
both be individually valid, but no edge could be drawn from any fu-
ture vertices that connects them both as this would invalidate the
edge, such, this would cause the graph to split. The network then
needs to decide on which ”split” to follow, and does this through
a method described in Popov 2016 called Tip Selection (referring
to the tips of the graph, the latest vertices included in the graph).
Tip Selection is done through a random walk from the first vertices
in the graph towards the tips of the graph, the walk is intention-
ally bias towards vertices with more ”weight”. Weight is a simple
proof of work that is individually cheap to calculate but expensive
to perform numerous times. By being bias towards more weighted

11

transactions, the walk will enter the side of the split with more work
done on it, and over time the network will abandon the other split
and it will not grow any further, invalidating one of the double spend
transactions. An attacker could not prevent this without significant
resources, because they would need to create more weight in the
form of proof of work than the rest of the network.

4.2.3 Block-Lattice

Block Lattice was first proposed in LeMahieu 2017 as a novel data
structure. In block-lattice, every account has it’s own blockchain,
entirely independent of every other chain on the network. The
overall state of the network is therefore to each client a set of n
blockchains b0 through bn, this is referred to as the ”Ledger”. Every
block on an account chain must be placed there by the owner, some-
thing LeMahieu refers to as ”Design-time agreement” (LeMahieu
2017). If there are two conflicting blocks on the network then they
must be caused by the malicious actions of the owner of the chain
they are on because they are the only person authorized to add
blocks to that chain, when this happens, nodes vote using Dele-
gated Proof of Stake for the block to keep, the block with the most
votes is then retained while nodes ignore any other conflicting block.

4.3 Approaches to consensus agreement

I will now describe the two approaches to agreement I have identified
as in use

4.3.1 Traditional

The traditional approach (or as I refer to it the ”public matter”
approach) is an approach where any node may freely be involved
in the consensus building process. This is shown in nearly every
cryptocurrency including Bitcoin where any node may be a miner
attempting to create the work for the next block in the blockchain
(Nakamoto et al. 2008) to IOTA where every node is required to
approve previous transactions to add their own (Popov 2016).

12

4.3.2 Algorand

In Gilad et al. 2017 a new system called Algorand was introduced
which introduced a new approach to consensus agreement. Algo-
rand was the first protocol to introduce a system where a limited
set of the population that is representative of the node population
makes decisions on behalf of the network (I refer to this as the
”delegated” approach). In Algorand, a Verifiable Random Proof is
used to select a ”Block Proposer” and ”Certifying Committee”, the
Block Proposer collects transactions into a block and proposes it
to the committee, who then check as to whether this would be a
valid block and if so approve it. Once this is done the Certifying
Committee and Block Proposer can prove that they are members
of each group through use of ”Winning tickets” which are mathe-
matical proofs that they were selected by the network (that is, the
identities of the certifying committee are secret until their decision
has been made). The network accepts the result of the certifying
committee.

4.4 Consensus agreement systems

A consensus agreement system is an underlying algorithm used to
decide between two proposed states when there is a fault such as
a double spend. Agreement systems seek to make it very hard to
change the agreement once it has been established (for example by
retroactive revocation of a transaction).

4.4.1 Proof of Work

The first agreement system was proposed in Nakamoto et al. 2008
and is known as Proof of Work. Proof of Work is a simple system
whereby out of a set of proposals, the one with the most ”work”
is the one that the network agrees to. ”Work” is an expression of
computation done by a computer system and is made of an NP-
hard problem (the ”problem”) and a ”difficulty” assigned for each
attempt at that problem, to demonstrate this I will describe the
work problem used in the Bitcoin network.

The problem described in the bitcoin network is to attempt to
combine a block’s hash with some random content to produce a
SHA256 hash with as many zero bits at the start of the hash before

13

the first one bit as possible. The ”difficulty” is the amount of zero
bits at the start of the given hash for an attempt at the problem.
The attempt with the highest difficulty is the accepted block. Bit-
coin introduces a ”threshold” system to limit the amount of blocks
that the network adds by requiring the next block to the chain to
have a certain difficulty and a difficulty adjustment mechanism that
causes the threshold to be adjusted such that across the network one
block will reach this threshold approximately once every 10 minutes
(O’Dwyer and Malone 2014).

4.4.2 Proof of Space

Proofs of Space are similar in nature to Proof of Works in that Proofs
of Work require allocation of non-trivial amounts of processor ca-
pacity to solve a problem. In Proofs of Space, instead of processor
capacity the problem requires allocation of a non-trivial amount of
memory or disk space (Dziembowski et al. 2015 and Ateniese et al.
2014). Proof of Space is seen as more environmentally friendly than
proof of work as problems typically require less energy consumption
than Proof of Work problems (Park et al. 2015). An example of a
Proof of Space problem is a challenge based around graph pebbling
(Dziembowski et al. 2015 and Ren and Devadas 2016), for this ex-
ample, a miner can be required to commit to labelling a very hard
to pebble graph. In order to verify that the miner has labelled the
graph the miner can be challenged by asking for random locations
in the commitment until the network is satisfied that the miner has
pebbled the entire graph.

4.4.3 Proof of Authority

Proof of Authority is limited in use but it’s most notable use is
in Parity Ethereum (Parity 2019). In a Proof of Authority net-
work, some subset of the network has the ”authority” to endorse or
publish changes to the overall network state. Changes to the net-
work state are agreed to by the network when some criterion level
of the ”authority” agree (De Angelis et al. 2018). This works for
both public networks, where some algorithm may determine who is
a member of the authority (such as random selection bias towards
accounts with higher stakes) or on private networks where certain
central authorities may form authority nodes (J. Morgan 2016).

14

4.4.4 Proof of Stake

Proof of Stake algorithms are based on selecting the next block based
on the wealth or age of the proposer (the ”stake”) (Buterin 2013,
King and Nadal 2012, Kiayias et al. 2017 and Saleh 2018). Proof
of Stake has advantages in speed (as no work has to be done and
instead those with stake in the network must simply agree) but has
attracted criticism for not providing negative incentive for stake-
holders to not vote for forking networks (Ray and Authors 2018).
This has been however pushed back on by others. In LeMahieu 2017
Colin LeMahieu says on this topic:

With this arrangement, those who have a greater finan-
cial investment are given more power and are inherently
incentivized to maintain the honesty of the system or risk
losing their investment.

Others have designed their Proof of Stake systems to introduce in-
centive to not vote for forking networks through punishment of those
that maliciously use their stake, in Buterin and Griffith 2017 for ex-
ample punishment of malicious validators is introduced:

Accountability allows us to penalize malfeasant validators,
solving the “nothing at stake” problem that plagues chain-
based PoS [Proof of Stake]. The penalty for violating a
rule is a validator’s entire deposit.

Proof of Stake is used in a wide variety of cryptocurrencies, no-
tably Ethereum plans to use Proof of Stake in it’s Casper Protocol
(Buterin and Griffith 2017).

4.4.5 Delegated Proof of Stake

Delegated Proof of Stake is very similar to Proof of Stake in that
the network state changes based on the stake of nodes. In Delegated
Proof of Stake nodes can further delegate the authority to act on
their behalf with their stake to other nodes, networks may cause that
only a certain number of nodes who have the most stake delegated
to them then act to agree in order to increase the speed at which
the network can come to consensus (Grigg n.d.) or may cause that
nodes vote as normal, but with nodes allowed to vote not only with
their own stake but with the stake delegated to them (LeMahieu
2018).

15

4.5 Summary of Literature Review

We have discussed the many approaches taken to problems relevant
to our overall problem of Decentralized Computation, including how
the network agrees on decisions through systems such as Proof of
Work, Proof of Space, Proof of Authority, Proof of Stake and Del-
egated Proof of Stake. We’ve discussed how networks store their
global state through systems such as Blockchain, Tangles and Block-
Lattice and we’ve discussed the differences between the traditional
approach for consensus and the Algorand approach.

5 Project Approach

Based on the results of my background review, I will now discuss
my project approach. As a reminder, my aim is to:

... create a protocol and application that allows the exe-
cution of Decentralized Applications (”dApps”) with im-
proved performance over the state of the art.

5.1 Algorithm Design

My first step should be the fundamental design of my algorithm. In
consideration of the background and algorithms used in the state
of the art, I have decided that I will make use of a combination
of a Proof of Authority and Delegated Proof of Stake algorithm in
order to balance security and performance across the network. I was
particularly inspired by LeMahieu 2017 for it’s novel block-lattice
data structure and will use this as part of my project.

5.2 Validation in Theory

I will validate my algorithms through empirical evaluation of their
effectiveness in speed and security and will then compare them to
other systems already in practical use to show my rate of improve-
ment (if any).

5.3 Application Design

I will design my application to be written in Java and design sys-
tems that may not have been covered in the algorithms described

16

above, such as networking and specific information as to how the
application will operate, such as an instruction set for execution of
applications.

5.4 Validation in Practice

I will validate the system in practice by ensuring that the practi-
cal program operates as expected with nodes communicating on it
and performing standard operations, as well as recovering effectively
from byzantine faults due to mis-configured or attacking nodes.

5.5 Overall Review

I will review the project and the steps taken above to identify
whether I have met the aims and objectives I set for this project.

6 DScript Protocol

I will now talk about the DScript Protocol, a collection of protocols
and algorithms used to enable the DScript Consensus System.

6.1 Delegated Proof of Stake

The system uses Delegated Proof of Stake as the base mechanism
to ensure consensus across the network. Delegated Proof of Stake
supports the consensus of the core building blocks of the DScript
network which will be described below in more detail.

6.1.1 Conflict Resolution

If some change in state is broadcast and there is no objection to this
change, nothing happens and the change is silently accepted, this is
an idea first proposed in LeMahieu 2017 and has advantages in terms
of network capacity used. If there is an objection or conflict with
a proposed state, then a voting round begins. In the voting round
every online representative votes for the first valid state change they
saw (if any) and the proposed change with the most votes wins and is
certified by all honest representatives. So long as at least 50%+1 of
the network stake is held by honest representatives, there is no way

17

any attacker or combination of attackers can out-vote the honest
representatives.

6.2 Block-Lattice

Accounts and Applications are stored in Block-Lattice blocks, each
account or application has its own, distinct blockchain, beginning
with a create block which establishes the initialization parameters of
the account or application, for example in accounts one initialization
parameter may be the account’s public key which is used to check
that a transfer is signed by the real account holder. Each account
and application’s address is the SHA512 hash of the create block of
their blockchain.

6.3 Representative Population Sampling

Representative Population Sampling is something more seen user
research that in protocols designed in computer science (Krejcie and
D. W. Morgan 1970). We however will be using it throughout the
DScript protocol to increase the speed and efficiency of the network.

6.4 Representative Committee

A ”Representative Committee” in the scope of the DScript Network
is a committee of N nodes who have been selected by the network in
order to accept a ”problem” and return a ”solution”. A ”problem”
may for example be a start state and input into a state transition
machine and a ”solution” may be an end state of that same state
transition machine. Representative Committees are chosen to be a
random sample of the network through a psuedorandom selection
algorithm 1. The Building Blocks of Representative Committees are
therefore:

• An algorithm to determine a list of nodes who may be a member
of a representative committee.

• An algorithm to create a seed to be used with a psuedorandom
generator to select nodes to be a member of a representative
committee.

1It is important that the algorithm is psuedorandom rather than random so that the nodes
selected can be verified in the future.

18

6.5 State Transition Agreement

State Transition Agreement is the overall goal of a Representative
Committee. It is reached when some amount X of the N nodes in
the Representative Committee agree on a solution to the problem
given to them. For example nodes may agree that: p(s0, 1) −→ s1

6.6 BCRA

In order for our overall algorithm to work, we need a system through
which every node on the network can reach consensus onto a list of
accounts. If we did not have this list, then nodes would not decide on
the same executors and therefore the system would fail. Therefore,
this list needs to be exactly the same across all nodes in both order
and contents. In order to perform this function, I have developed an
algorithm that I call BCRA. BCRA 2 is one of the building blocks
of representative committees and is the algorithm that is used to
determine a list of nodes who may be a member of a representative
committee. It is an entirely novel algorithm created by me. BCRA
depends on a Consensus Agreement System and is useful for very
quickly deciding upon a collection of items which are exactly the
same across many nodes. BCRA depends on Time Synchronization
of the nodes involved in the BCRA process to at least a level such
that the skew, that is, the maximum difference in recorded time
between the nodes due to bad synchronization at a given real time,
satisfies skew < roundT ime/4 where roundT ime is the amount of
time that a single BCRA round on the network takes. As the skew
becomes bigger, the BCRA algorithm becomes less efficient (in that
it will likely accept less items into the list agreed on), but will still
produce agreement.

6.6.1 Overall Goal

The overall goal of the BCRA protocol is to produce a list L that
contains some number of items L1...Ln where n is the total number
of items within L where.

• The items that are included in L are guaranteed across all
nodes.

2BCRA is the acronym of the 4 stages of this Protocol. These are Broadcast, Consolidate,
Resolve, Affirm.

19

• The order of the items in L is guaranteed across all nodes.

• Items that are included in L are those that are seen most widely
by the network.3

6.6.2 Broadcast

The first stage of the BCRA process is the Broadcast phase. In the
broadcast phase, nodes broadcast items that they wish to appear in
the list across the network, these are forwarded across the network
allowing them to be seen by more nodes. As each node receives an
item, it stores the item in it’s memory.

6.6.3 Consolidate

Each node takes all the items they have received and puts them into
a list, each node takes each item and hashes the item such that they
have a list of hashes of items, the hashes are in order as to where
the original items were in the list. Each node signs their list and
broadcasts it along with their representative address that has their
stake. Each node remembers the items in each other representatives
list and how much stake that representative has.

6.6.4 Resolve

The nodes now need to agree on a single list that they will then work
towards certifying as the winner. For every record in every list we
assign a weight to that record, w(r) where the weight is the sum of
the weight of every representative whose list it is included in, such

that w(r) =
∑count(listsContaining(r))

i=0 stake(listsContaining(r)i)] and
for every list the weight of that list w(l) is the sum of the weight of
all records in that list l0 to ln such that w(l) =

∑n
i=0[w(li)].

6.6.5 Affirm

Based on this resolution phase, nearly every honest node should
now have decided on the same list. These nodes then sign this list
and broadcast their signature to this list, simply now, the list which
reaches a 50%+1 majority of the sake is duly agreed to. Nodes then
broadcast the items that are hashed within this list by consulting

3This is to prevent an attacker stuffing a list with cooperating attackers.

20

the hashes, seeing if they hold any of the items from that hash and
then broadcasting it. It is unlikely that items will not be resolved
to their original un-hashed items because the winning list is the one
that was most widely seen across the network, if however this does
occur, the hash is retained in the list in place of the item and the item
may be reintroduced by any node at any time. The hashed record
is treated the same as any un-hashed record, this is necessary due
to the ability of an attacker to otherwise cause a Race Condition
by withholding an item and then introducing it after it has been
treated differently due to being hashed.

6.6.6 Automation

This process can continue forever, with the network agreeing to new
lists in advance through design time agreement as to when these
lists should be agreed to.

Lack of Normalization as a Design Feature We are aware that a
reader may notice that the BCRA algorithm has no normalization
of the weight of a list. This is an intentional design feature de-
signed to thwart attackers even when they have an exceptionally
high ability to influence the weight of a list. We should first con-
sider that for an attacker, stuffing the list with executors does not
necessarily increase the chances of the attacker being chosen (as we
will discuss in far more detail later on) and that an attack may fail
if any honest executor joins the list. Therefore, the lack of nor-
malization is intentional, we favour lists with more nodes in every
case because this increases the chance of an honest node being pre-
sented even in high attacker influence scenarios. For example, an
attacker may hold a large amount of stake, but all honest nodes
need to do is send 1 record onto the list, this list will inherently
always have a higher weight than any list of the same but without
that one record (because this one record is endorsed and weighted
by the one honest representative at a minimum who broadcasted
that commitment). Normalization would allow attackers to begin
to attack the BCRA process in circumstances where the attackers
controlled a large amount of stake. By concentrating their stake
into a small list, an attacker could defeat honest nodes. Hence, we
do not normalize the weight of BCRA lists.

21

Figure 1: Visualization of a Pin in transmission which has been signed by n
representatives.

6.7 Multiparty Pin Seeding

We have seen how we can create a list of nodes to select from through
the use of BCRA, we now need a seed for our psuedorandom selec-
tion algorithm. I have created an algorithm called Multiparty Pin
Seeding for this purpose. Multiparty Pin Seeding relies on the no-
tion that no attacker is able to predict the signatures of other parties
on a network, as to do so would require wielding that parties pri-
vate key. We rely on combinations of these signatures to generate a
seed. The overall goal of multiparty pin seeding is to create an algo-
rithm whereby given some input content i the algorithm produces
an output which is unpredictable for any one node or group of nodes
that hold less than 50%+1 of the network stake, but is immutable
in that it is the only valid output and can be verified as such. We
therefore must consider that for every pin created by the network
no further pin may be created for the same input in order to ensure
the pin is immutable4. Consider some input previously agreed to d,
we wish to create a pin of d for use on the network. We broadcast
d across the network such that each representative see’s it. When a
representative observes d, they ensure that it is not similar to any
previous input given to the multiparty pin seeding algorithm they
are aware of5, this protects the immutable property of pins. If the
node is satisfied of this, they then take d and hash it, they sign this

4The immutable property of a pin is required as it is used as the seed for witness list
generation, if it was not immutable an attacker could make slight changes until they received
an evil seed, that is, a seed that allows them to select a list of only attackers.

5The similarity of two pieces of data, d1 and d2, and whether they are too similar is a
decision for each node. However, we can say that if 50%+1 of the stake is held by nodes that
are honest and set an appropriate threshold the system is not broken by similar data. In a
practical application you may consider data similar if it has the same hash.

22

hash and attach it to d such that the message is now composed of
d...s0 where s0 is the signature of this node. The node then broad-
casts this message. For every new node that see’s this message, they
then (on satisfaction of the recently seen data test) sign the entire
message 6 and append their signature as such, this creates a chain
of repeated signatures s0 through sn where n is the number of nodes
that have signed the pin. This is shown in Figure 1.

For every signature list, the ”weight” of this list, w(l) is equal to
the stake of every node who has signed this list.
|(s0, ..., sn)| = n
w(l) =

∑n
i=0[stake(node(si))]

6.7.1 Threshold and Pin Finality

When a node observes a pin where the weight of that pin is greater
than or equal to 60% of the stake w(p) >= 0.6 they reduce the pin
until if they removed the next entry the weight of the pin would be
less than 55% of the stake.

p = (d, s0, ..., sn)
where
n = |p∗|
p∗ = arg min w(l|w(l) >= 0.55)
This pin is now the conclusive pin used by the network for the

piece of data d. The pin itself is composed of the d (the ”initial-
ization vector” which was signed by the first signature) and the
signatures of every node thereafter.

The pin can be hashed to be used as a seed in the psuedorandom
number generator:

seed = hash(p)7

So long as an attacker’s stake in the network is ≤ 50%, they are
unable to create a new pin because the honest stakeholders will not
sign the same data twice, and hence the pin is immutable.

6.7.2 0.6 Threshold

Readers will notice that for every pin in Multiparty Pin Seeding,
the pin is resolved at a weight of 0.6 of the total stake of the net-

6A node may only sign a signature list once, any signature list signed more than once by
the same node is not valid and will be refused by any honest client.

7We use an abstract name here as in practice any qualifying algorithm could be used. Hash
simply needs to be an algorithm that returns a secure one-way hash.

23

work, then reduced to a weight of 0.55 of the total stake of the
network. To consider why these numbers were chosen, let us con-
sider the underlying consequences of these numbers. The choice of
0.6 (the ”Threshold Criterion”) is a balance between the Speed of
the Algorithm and it’s Security. The lower the Threshold Criterion,
the easier it would be for an attacker to break the immutability of
an MPPS pin by creating a new pin with the same initialization
vector and having cooperating attackers sign it. We have set the
threshold at 0.6. Let’s consider a worst case scenario where an at-
tacker plans to create 2 pins for the same initialization vector, recall
that no honest representative will sign the same initialization vector
twice. Therefore, we can rule out 60% of the stake minus the at-
tacker stake from signing the pin. Therefore, if the attacker didn’t
have any stake, in a worst case scenario they would only be able to
convince 40% of the stake to sign their second pin, not enough to
reach the threshold. We can see from this that an attacker would,
in a worst case scenario for the defenders, need a 20% stake in the
network to defeat the MPPS pin. This may sound quite low, but we
should consider that even if the MPPS immutability property fails,
it does not mean that each honest representative will now accept the
new MPPS pin. That is, even if an attacker breaks the immutability
of an MPPS pin, honest nodes will refuse to accept the 2nd pin even
if it reaches the Threshold Criterion (so long as they have seen the
first pin before). This will naturally, split the state of the network
which will be resolved through Delegated Proof of Stake. While this
will take time, it is still secure, and regardless, a 20% stake in the
network is quite hard for an attacker to achieve. Even more unlikely
is that every single node that did not sign the pin did not see it (we
will discuss this later in MPPS Performance and MPPS Security).

6.8 Lightweight Distributed Database

I have created an algorithm and communications protocol called
the Lightweight Distributed Database (”LDDB”). LDDB is a sim-
ple lightweight database on which state information is transferred
between nodes (Sweet 2019c). Every object in LDDB is made of an
Identifier and a Data Content. The Identifier is made of the hash
of the Data Content 8, such that for every Data Content there is

8In our application we use SHA512 for this purposes.

24

only one valid Identifier. LDDB works so long as at least one client
well connected to the network remembers the data content, every
other client need only remember the identifier, reducing disk space
needed. LDDB has two methods for fetching content.

6.8.1 Direct Fetching

Direct Fetching is the first method through which nodes can gain
information is through Direct Fetching, in Direct Fetching a client
broadcasts an Identifier, a location9 on which to serve the Data Con-
tent and a precommitment for cancelling the request in the future.
The user broadcasts this message across the network, when a node
see’s this message and has the Data Content, they connect to the
location provided and transmit the content 10. When the content is
received, it can be easily checked as to whether it is valid by compar-
ing it to the identifier to see if it matches. If it does, the node may
then cancel their direct find request in order to ensure they do not
now receive pointless transmissions of the Data Content. To do this,
they simply transmit the secret portion of their precommitment.

Precommitment The precommitment is a simple way in which a
user can certify their identity across the network after pre-committing
that identity. To generate a precommitment, a user first generates
a set of random bytes b (The ”secret portion”), and then creates
their precommitment as p = hash(b). Any secure hashing algo-
rithm maybe used 11. To then execute the commitment, the user
simply transmits b. When a client receives b, then hash it, notice
that is has the same hash as the precommitment and can therefore
be sure that the owner of the precommitment has committed to it
(because assuming enough bytes were chosen at random no other
person could in a reasonable time reverse the hashing process).

6.8.2 Indirect Finding

Another way that a user may fetch resources is through Indirect
Finding, this is particularly useful if attackers employ tactics like

9This could be any protocol such as FTP or HTTP, but in our application we use HTTP.
10Systems may be added such as verifying the location wishes to receive the content through

a simple query before transmission in order to prevent using the system for malicious purposes
such as Denial of Service attacks.

11In our application we use SHA512.

25

denial of service attacks on the locations given in Direct Finding
requests, but can use up more traffic. Indirect Find messages look
the same as Direct Find messages minus the location parameter.
Instead, when a client receives the message and has the data content,
they broadcast the content across the entire network 12. The client
when they observe a broadcast with the Data Content then cancels
their indirect find request in the usual way through use of their
precommitment.

6.9 Execution Delegation

We’ve now laid out the ways in which our Representative Commit-
tee, BCRA List and Pin to use as a seed will be generated. The
first thing we need to do is lay out the exact algorithm that decides
on which of the candidates (c0, ..., cn) where n is the total number
of candidates to be selected, will be selected and included in the
Representative Committee. I will first show a naive approach and
demonstrate why it is insecure.

6.9.1 The simple approach

For avoidance of doubt this is not used in DScript but is included to
show the reader why we use the method actually used by presenting
the alternative and why it is not secure. One way to decide on the
list is that given a list of candidates (c0, ..., cn), a seed value p and
a random number generator r(p), we could simply select candidates
purely at random from the list. Such that if the goal number to be
selected is g:

selected = {ci|i ∈ pulled}
pulled = {r(p), r(p), ...}
|pulled| = g13

The problem with this solution is it is open to a Sybil Attack.
A Sybil Attack is an attack where the system is subverted by an
attacker who claims to be multiple unique identities (Douceur 2002).
Say I am an attacker and wish to subvert this system but I am a

12A suitable size threshold should be used on broadcasted messages.
13|a| denotes the distinct elements in set a and not just each element even if equal to another

element. Consider two sets, A and B, such that A = {1, 1, 2} and B = {1, 2}. In set theory,
{1, 1, 2} = {1, 2} and therefore A = B, such for every element in A and B x ∈ A ⇐⇒ x ∈ B.
This proof adapted from and credited to to user75560 at https://math.stackexchange.com/

questions/380272/notation-for-number-of-distinct-elements-in-a-set

26

https://math.stackexchange.com/questions/380272/notation-for-number-of-distinct-elements-in-a-set
https://math.stackexchange.com/questions/380272/notation-for-number-of-distinct-elements-in-a-set

minority on the network. I could cause this system to select many
attackers by simply flooding the list of candidates with attackers.
For each selection made from the list, the chances of an attacker
being chosen are:

chanceAttackerChosen(l) =
|{l|attacker}|

|l|
To attack this system, we wish to maximize the members of the

committee that are chosen as attackers. To do this, we simply need
to flood the list to maximize chanceAttackerChosen(l). To avoid
this problem, the network needs a way of skewing chances of selec-
tion based on some sort of reputation in order to counter a Sybil
attack.

6.9.2 The approach taken

We will mitigate Sybil attacks through weighting the selection pro-
cess to be bias towards users with a higher ”stake”. Stake will be
decided through the Delegated Proof of Stake system and will be ex-
clusively based on the users stake and any stake delegated to them.

Where d(u) is a set of the delegations for a given account u and
b(u) is a number representing the balance of an account u:

stake(u) = b(u) +
∑|d(u)|

i=0 [d(u)i]
Using this stake, we can now weigh the selection process in favour

of accounts on the list with a higher balance, to do this, we will ini-
tialize a ”selection range” r considering a set of accounts a0 through
to an where n is the total number of accounts.

The selection range begins at 0 and reaches the selection range
ceiling c which is defined in respect of a set of accounts a as:

c(a) =
∑|a|

i=0[stake(ai)]
Given this selection range, we need to distribute the accounts in

the list across the range, we do this proportionally based on the stake
of each account such that an account with a 50% stake in respect of
the total stake of all accounts on the list has a 50% chance of being
selected from the list.

To distribute the accounts across the range, we will assign each
account a segment of the range beginning at the end of the range
for the previous account and of a length equal to the stake of the
given account. Such that for any set of accounts a, the range of an
account ai will be a set of:

27

Where i > 0
start(i) = finish(i− 1) + 1
finish(i) = start(i) + stake(ai)

Where i = 0
start(i) = 0
finish(i) = stake(ai)

range(i) = {start(i), finish(i)}
We now need to select accounts from the range. We first define

the amount of selections we wish to make as s,14 we will then make
s selections across the range.

To select an account, we generate a random number r and consult
the range, if an accounts boundaries are such that startBoundary >=
randfinishBoundary <= r then the account is selected. An ac-
count can be selected more than once, and if it is selected more
than once then we ignore the selection, such that if an account is
selected twice to be included in c and s = 5, then |c| = 4 because
the account will not be added the 2nd time but neither will another
account. This is an intentional design choice in order to prevent
degradation of the honest subset of the network if there is a case
where very honest nodes hold very large stakes.

Based on this, we can select the committee, to recall the defini-
tions given previously:

... of the candidates (c0, ..., cn) where n is the total number
of candidates to be selected

We can say:
selected = {ci|i ∈ pulled}
a(i) = accountAtPositionInRange(i)
pulled = {a(i), ...}
|pulled| = s
Where:
accountAtPositionInRange(i) = {ax|startBoundary(ax) >= i∩

endBoundary(ax) <= i}
14In the practical implementation of DScript, we always attempt to select 10 members of

the committee.

28

6.10 Execution

We now need to discuss how this committee will decide on the result
of a problem presented to it. Recall that our overall aim is:

To create a protocol and application that allows the ex-
ecution of Decentralized Applications (”dApps”)
with improved performance over the state of the art.15

We will therefore discuss this portion of the protocol in narrower
terms, that is, in terms of the execution of a decentralized applica-
tion. To do this, we must first lay out the anatomy of a Decentralized
Application on the DScript Network as well as the language used to
execute Decentralized Applications on the DScript Network.

6.10.1 Deterministic Distributed Language

The Deterministic Distributed Language (”DDL”) is a programming
language designed and implemented by me for this dissertation. The
DDL design document (Sweet 2019a) begins by saying:

This is a fast, low memory, highly deterministic, back-
wards compatible and platform neutral language designed
for the execution of decentralized applications (DApps).

All DDL programs are referred to in the design document in pure
binary form. Every DDL program begins with a 2 byte version iden-
tifier, the purpose of this identifier is to allow backwards compatibil-
ity, for example by emulating deprecated behaviour when executing
old programs on new clients. From there, every DDL program de-
clares how long it is (the ”instruction set length”) using 4 bytes,
these guarantee the exact amount of instructions that are within
the program.16 In order to preserve state, DDL provides a ”per-
manent memory” which is a map of 64 byte indexes onto 64 byte
values. For more temporary storage during execution, DDL provides
a stack with a maximum size of 2048 64 byte items, DDL also pro-
vides a single value called the temporary value, which can be used
to store a single item independent of the stack (which is also not
preserved at the end of execution). The commands for interaction

15Bold added for clarity.
16A DDL program is not valid if the declared amount of instructions is not consistent with

the actual amount of instructions.

29

with permanent memory are 0x29, 0x30 and 0x31. The commands
for interaction with the temporary value are 0x32, 0x33 and 0x34.
Most commands in DDL are routine and common across many low
level languages, such as 0x2 ”push” and 0x5 ”stacksize”. But DDL
has some notable commands related to its use on the network such as
0x19 ”getaddress” or 0x20 ”maximumcost”. Additionally, there are
some other commands to do with extensions to the DScript network
such as 0x35 ”setsubchain”.

6.10.2 Anatomy of a Decentralized Application

A DScript Decentralized Application is composed of two compo-
nents, the ”Memory” component which stores the memory that
makes up the current ”state” of the program and a ”Method” com-
ponent which stores the logic of the program.

The Method Component The method component describes the callable
methods available to the program which accept input. Each method
is indexed by 64 bytes and contains three parts:

• The Input and Output Definition

• The Visibility

• The Source Code

Input and Output Definition The Input and Output Definition
defines the inputs required to invoke the method and specifies whether
the method may return an output. The input definition may specify
the amount of bytes that the input must satisfy as a range, this is
formatted in the format a,b where a is the minimum bound (inclu-
sive) and b is the maximum bound (inclusive). It is illegal to call
a method with an input that does not satisfy this range, if a single
number is supplied as the input definition, it is both the minimum
and maximum bound. The input definition may be zero, in which
case no input is acceptable. The program may read the input via
instructions 0x24 ”getinputlength” and 0x25 ”getinput”. The out-
put definition is a single Boolean that may either be true, which
would mean that the program can send output, or false, which
would mean that the program cannot send output. If the output

30

definition is false, then it is illegal for the program to call instruc-
tion 0x28 ”output”, if the definition is true, then the program may
output up to 1024 bytes of output, as shown in Sweet 2019a:

If the output exceeds 1024 bytes only the first 1024 bytes
of output will be included, the rest will be ignored.

Visibility Visibility controls whether the method may be in-
voked as the initial call when the committee is executing a prob-
lem (that is, whether an outside user may advance a programs state
through a call directly to this method). Visibility is a boolean, if it
is true then the method may be called initially, if false it may not.
The committee will refuse to execute a non-visible method as the
first method, but another DDL program may call the method, while
not mentioned in the DDL design docs, calling 0x101 will cause the
program to attempt to invoke the method with the address given in
the temporary value, this is a behaviour exclusively seen in DScript.

Source Code The Source Code of every method is an indepen-
dent, self contained DDL file that follows the standard set out in
the Deterministic Distributed Language section.

6.10.3 Cost

Now that we have described the language on which applications will
be executed and the structure of these applications, we can now
delve into how a committee will actually execute these applications.
The first thing to mention is ”cost”. Cost is a way in which the net-
work prevents abuse of the execution functionality while incentiviz-
ing executors. Every request to advance a program’s state (which
contains the program’s address, the method to call and the input)
also contains an ”commitment”. A commitment is similar to a ba-
sic ”transaction” in that it has an authorization of an underlying
account and specifies an ”amount” except that a commitment does
not instantly ”spend” the amount specified within. To spend the
amount specified the commitment must be converted to a series of
transfers. To convert the commitment into transfers, the committee
must come to a decision, this decision can jointly be used to advance
the state of the program and claim some amount of the ”commit-
ment”. The commitment is claimed up to the ”real cost”, this being

31

the actual cost incurred for the execution of the application. Cost is
based exclusively upon instructions called, each instruction in DDL
and the extended instructions for DScript (those from 0x101 on-
wards) have a set ”cost” to call them. The total cost of executing
i instructions of n length is

∑n
x=0[cost(ix)]. The real cost is the

total cost of advancing the entire state specified in the message to
advance the programs state. In order to reward the executors, we
perform the following reward strategy:

• We set the amount to be distributed a to be the total cost
rounded down to the nearest multiple of n where n is the
amount of members of the committee.

• We create a transaction for each member of the committee that
transfers a to that member, the authorization for this transac-
tion is the commitment itself. All the transactions are bundled
together and pushed in full to each chain of each member of
the committee.

If at any point the cost of executing the program exceeds the max-
imum amount given in the commitment, the program shall halt as
if it had reached an exception and output exception 0x402.17 This
is similar in nature to authorization holds used by banking services
in that tokens are not spent immedietally but are authorized in ad-
vance for spending.

6.10.4 Gossip

Gossip is an ability of the committee to communicate messages
to each other during execution, to implement gossip, we leverage
the existing network broadcast messaging system. To prevent non-
committee members from reading gossip it is encrypted so only
members of the committee may view it. Each gossip message is
made of two components, the ”data” component and the ”key re-
covery” component. To create the data section, a client takes the
data they wish to transmit and generates an AES-256 key k to en-
crypt the data. The data section is then this encrypted data. The
key recovery section is composed of n sections where n is the number
of members of the committee c, each section is created by taking the

17This is a nod to HTTP status code 402 (payment required).

32

public key of each member of the committee and using it to encrypt
k, such that:

keyRecovery = {∀i ∈ c[encrypt(k, publicKey(ci))]}
This gossip is then sent across the network, when a member of the

committee recieves the gossip, they can reveal its contents by finding
the relevant section of the key recovery segment, decrypting that
section to reveal the AES key and using that AES key to decrypt
the data segment.

6.10.5 Execution by the Committee

We will first clarify as previously alluded to in the cost section that
there are certain instructions added on top of the standard DDL
instructions by DScript, these are instructions 0x101 onwards (as
DDL will never create an instruction outside the range of 0x0 to
0x100). These instructions are ”methodcall” 0x101 which can call
another method in a DScript program and is described above, as
well as ”random” 0x102 which pushes an entirely random 64 bytes
into the temporary value and ”httpget” 0x103 which attempts to
fetch some bytes over HTTP. We will describe exactly how these
methods are performed later as they are special in that in the case
of 0x102 and 0x103 they require the communication of the commit-
tee to some degree. In the basic case of a decentralized application,
each member of the committee takes the current program state, the
method to be called, and the input, they verify this is a legal ac-
tion to take and then execute the method until completion or an
exception. So long as there is no exception, they then hash the per-
manent memory contents and gossip them to the committee, if the
entire committee gossip the same hash they know they have come
to the same agreement, each committee member then generates the
serialized end state and signs it, these signatures combined with the
serialized end state form the proof of execution and final state. This
can then be converted into a block that advances the application’s
chain, the advance of the chain is made of the committees decision,
the proof of who was selected to be a member of the committee and
the initial input. If the committee is unable to agree to a final state
then the state does not advance and no transfers of compensation
may take place (that is, a condition for using a confirmation trans-
action is the completion of some valid state transition). This is so
that the user may then take another attempt at causing a transition.

33

This is not an attack vector as for any honest network, the attacker
will eventually encounter a committee of fully honest nodes and will
then lose their tokens when they advance the state and claim the
funds.

6.10.6 Extra Instructions

There are some instructions unique to DScript that we shall now
describe. Extra Instructions are not included in Sweet 2019a be-
cause they extend the language in ways only possible in the DScript
network.

Method Call 0x101 0x101 (aka ”methodcall” or ”Method Call”) is
a special instruction that allows the application to call other meth-
ods in the application regardless of their visibility. Method Call
does not support specific input arguments or any output (although
an output is acceptable it will not be available to the caller). Impor-
tantly however, a method called by method call will share the same
environment as the caller, such that it will share the same stack,
temporary value and permanent memory of the caller, this allows
transfers of information and inputs to be sent via the stack. The
address of the method to be called is always whatever value occu-
pies the temporary value holder (if the temporary value is empty,
the address is 0x0).

Random 0x102 0x102 aka ”random” is a special instruction that
pushes a completely random 64 byte value to the stack. While
in a normal program this would be easy, it requires more work in
DScript due to the fact that many nodes are performing the same
computation, we need to ensure the randomly generated value is
deterministic across the committee, while making sure it is also un-
predictable. To do this, we will use the gossip system to conclude
a seeding value to feed into a Psuedorandom Number Generator on
the first call of random. When a node first see’s that 0x102 is called,
they announce this in a gossip to the committee. Each member of
the committee then computes a ”randomness vector” v which is a
random number of any value. Each member also computes a ”ran-
domness padding” x which is a random number of any value. Such
that −∞ ≤ v ≤ ∞ and −∞ ≤ x ≤ ∞. Based on these two val-

34

ues each member computes a ”randomness commitment” c which is
made of sha512(v + x). The reason for the randomness padding is
to prevent a rainbow table attack against the commitment by mak-
ing the hash different even for the same number. Each committee
member then signs their commitment as their own and transmits
it as a gossip message. Once each member has done this and all
messages have been received by all witnesses, the committee enters
the ”reveal stage”, normally, the last member to transmit would be
able to influence the seed as their final number would set the over-
all number of the seed, but due to their randomness commitment,
only v is acceptable to the rest of the committee. Each committee
member reveals v and x to the network, and this is only accepted
if sha512(v + x) = c. Once each committee member has accepted
all randomness vector values as a set V , they create the randomness
seed s as:

s =
∑|V |

i=1[Vi]
This seed can be fed into the Psuedorandom Number Generator

every time the instruction 0x102 is seen and used to input the same
random numbers each time across each run of the committee.

HTTP Get 0x103 0x103 aka ”httpget” is a primitive example show-
ing the networks ability to interact with off chain facts, in this case,
websites transmitted over HTTP. When the instruction is called, a
URL is created by encoding the item in the temporary value into a
US-ASCII string. Each member of the committee makes a request
to this URL and hashes the response, if all committee members get
the same response they may continue with execution by providing
the response to the program. To do this, they divide the HTTP
response body only into 64 byte chunks and add these one by one,
from the end of the body to the start, to the stack, they then add a
single value to the stack which indicates how many items of response
were added to the stack.

7 DScript Java Client

As part of my Final Year Project, I have created a Java applica-
tion that implements the DScript Protocol described above. The
application runs a node that can communicate with any other node

35

over a network and can perform the functionality described in the
DScript Protocol.

7.1 Networking

I designed my own networking solution for connecting nodes to-
gether which is described in detail in the DScript Technical Design
Document (Sweet 2019b). As part of this design, I decided that com-
munication should be done over HTTP and I created 3 networking
layers on top of the Application layer of the OSI Model. These are
the Cluster, Message and Application18 layers.

7.1.1 Cluster

The Cluster Layer is responsible for ensuring that the node remains
connected to the DScript Peer to Peer network, it does this by dis-
covering nodes through queries to already known nodes and by an-
nouncing itself to nodes. Principally, the Cluster Layer is responsi-
ble for ensuring the network is as well connected and aware of other
devices on the network as possible.

7.1.2 Message

The Message Layer is responsible for the transport of messages
across the entire network, all messages sent over the Message layer
are broadcast-like in nature. The Message Layer handles the small
proof of work system used to ensure Denial of Service cannot be per-
formed over the message layer, it routes messages from other nodes
and it passes messages for our node to the respective components
that need to be aware of them.

7.1.3 Application

The Application Layer is responsible for complex operations de-
scribed in the DScript Protocol and has a wide range of responsibil-
ities. Any system built on top of the DScript messaging system sits
here, including the real-time conflict detection system, the proof of
work voting system and the BCRA list generation system.

18Application as it relates to DScript

36

7.2 Cryptography

The DScript network requires cryptography for making references
to previous blocks by hashing them, for use in proof of work sys-
tems and for use in authenticating an action taken on an account
(such as through use of a key to prove said action). We use SHA-2
512 in hashing on the network, SHA-2 512 is an industry standard
hash algorithm with wide supported, recommended by the United
States Federal Government through Federal Information Processing
Standards Document 180-4 (Dang 2015).

7.2.1 Encryption

For encryption, we use Google Tink. 19 Tink is a library that Google
describes as ”secure, easy to use and harder to misuse”. Tink is good
for our use because it is easy to use and makes it harder for us to
make mistakes that would expose our application to critical security
vulnerabilities. For encryption, we also need to select an algorithm
to use, for Public-Private key encryption we use the Elliptic Curve
Digital Signature Algorithm (ECDSA) with a 256 bit key. This is
comparable in security to an RSA key of approximately 2048 bits
(Blake-Wilson et al. 2006). For symmetric encrpytion we use AES
256 which is comparable in security to an RSA key with 15,360 bits
(Blake-Wilson et al. 2006).

7.3 Bootstrapping

Bootstrapping is a hard problem with block lattice networks, we
took notice of how this is done in the Nano network to create our
bootstrapping solution (LeMahieu 2018). In our system, there are
two ”systems” running at all times, the Real-time network which is
watching transactions across the network and looking for conflicts
to vote on and resolve and the bootstrap network which runs in the
background. It is important to note that if a node was not there
at the time to observe a transaction, the only way to verify it is
legitimate is to announce it to the network again to see if any node
objects. When a client wishes to bootstrap, they select some nodes
at random and ask for their ”frontiers”, frontiers are the heads of
recently updated chains on the block-lattice. The nodes reply with

19https://github.com/google/tink

37

https://github.com/google/tink

proposed ”frontiers” for the client. From each of these, the client
then asks nodes on the network for the head blocks on these frontiers.
The client then verifies these blocks by broadcasting them on the
network to check for objection. If there is no objection, the client
can then confirm these head blocks, importantly, if these head blocks
are valid, then that also shows that every block under these head
blocks is also valid, and hence the client can now download every
block under this head block and as long as those blocks are properly
referenced by the head they can accept them as valid without having
to verify them.

7.4 Interface

Our network needs a User Interface, for this purpose we take ad-
vantage of the HTTP Server used by the Cluster layer network in
order to display a web panel in a browser. There is no other user
interface.

7.4.1 Web Panel

The web panel is accessed by the user by navigating to
my.dscript.site:port.20 my.dscript.site is a DNS A record that
points solely to 127.0.0.1 (the local machine), hence a connection
to my.dscript.site:port is a connection to 127.0.0.1:port. The web
panel is then located under the path /ui. In order to prevent at-
tackers accessing the panel, authentication is needed, when the user
is sent to the panel by the application opening their browser, the
application includes an authorization parameter in the query string
which is also saved in the application. Once this is seen by the panel
a cookie is inserted with another random token to maintain autho-
rization and the user is redirected to remove the authorization token
from their query string. Inside this panel the user can access fea-
tures of the node such as account creation, transfers and the Name
Service through clicking on links in the panel as shown in Figure
2. There are also certain hidden pages allowing debugging of the
application, such as visualizing certain chains on the block-lattice
as shown in Figure 3.

20We use this domain name rather than localhost because the Chrome browser does not
allow cookies on localhost but does on a domain, hence this is a workaround to that problem.

38

Figure 2: Screenshot from the Web Panel home page showing some of the
features available.

Figure 3: Screenshot from the Web Panel showing a hidden page that allows
exploring the chain of certain accounts on the block lattice. In this example we
are the genesis account and have transferred tokens to 3 others.

39

7.5 Caveats

There are certain caveats to the current application, the most no-
ticeable of which is that every node must be able to forward a port
to run on otherwise they will not be able to receive messages. This
is a feature that we could improve in the future through systems
such as web sockets or holding messages for nodes to query for at a
later time.

8 Evaluation

We have described how the DScript Protocol and Consensus Mecha-
nism operates on the network, we will now evaluate the performance
and security of the protocol.

8.1 Committee Consensus Performance

We will now discuss the performance of the committee consensus
process of the DScript Protocol by itself, to clarify, this is the part
of the protocol that deals with how a committee can agree a de-
cision after that committee has been selected. The Committee is
composed of n members who each have their own copy of the prob-
lem p0 through pn−1. In a basic sense, to come to agreement, each
member of the committee computes ri = solve(pi) which over the
entire network has a rate of complexity of O(n) where n is the com-
mittee population. In general, we can say that for every action of the
committee, given the traditional cost of that action (that is, the cost
for a single computer to execute it) c, the cost for the committee to
execute it is nc, because every member of the committee must exe-
cute the action to verify the truthfulness of the other members of the
committee. Indeed, it is important that we make the point that no
member of the committee inherently trusts another member of the
committee solely due to their membership of the committee. Hence,
every action must be verified and incurs a performance penalty equal
to the committee population.

8.2 Committee Consensus Security

One of the most important mechanisms that is required to balance
availability of the committee when faced with attack versus the trust

40

that can be placed in decisions in the committee is the decision cri-
teria. The decision criteria are the set of criteria that must be met
for the network to accept a decision of the committee. In DScript,
we lean heavily towards more security, our decision criteria is una-
nimity. That is, every member of the committee must agree with
a decision for it to be accepted by the network. We recognize that
this will allow an attacker to prevent a committee reaching a deci-
sion even if they have one member, but we counter it as necessary
for these reasons:

• The same principle applies in a reverse, even if every member of
a committee bar one is a cooperating attacker, that one member
will be able to veto actions of the attack.

• An attacker cannot hope to prevent a decision on a fact forever,
only delay that. Recall that we have previously said:

To convert the commitment into transfers, the com-
mittee must include come to a decision

because of this, a user may simply repeat their request and form
a new committee until the attacker is excluded. An attacker
can’t do this in reverse, because if an honest committee forms
and agrees, then they cannot request a new one as the funds
they used are now spent.21

8.3 BCRA Performance

The rate of performance of BCRA cannot be described in terms of
algorithm run time because BCRA rounds run for exact set intervals.
Therefore, the best way to describe BCRA performance is in terms
of how early an item must be broadcast in order for it to be included
in the list. Let’s measure the performance therefore in relation to
the amount of times a message must be transmitted between two
nodes before it is accepted into the network. Such that the cost c of
the message is c =

∑
[transmission] where a transmission occurs

when any node transmits the message to any other node.22 For all

21This is covered in more detail in the Overall Security section. It is important to note that
an attacker with a very large stake may be able to overcome this, but the stake required is
exceptionally hard to obtain.

22For the avoidance of doubt, this means that if a node broadcasts a message to n nodes,
they perform n transmissions

41

cases, the amount of transmissions done increases at a rate in line
with the population of the network such that for c, the rate of com-
plexity is O(n) where n is the network population. We will, for the
purposes of this evaluation, assume that the stake of the network
is distributed approximately equally across the network, we believe
we are reasonable in making this conclusion because in a decentral-
ized system using Delegated Proof of Stake those delegating their
stakes would not wish for any one user or group of users to hold
disproportionate power in the network because this would increase
the risk to those user’s stakes that those nodes could be convinced
to act in a malicious way. We would also point out that any while
it is unlikely there will be perfect balance across the network, slight
variations on this level of stake would have only a minor effect on
the performance described herein. Therefore, we say that for all
n nodes stake(n) = t/n where t is the total stake across the en-
tire network. We should now consider when we can confidently say
that a list will be selected. In all cases, an object is guaranteed to
be selected if across the network the stake attributed to the object
is at least 50%+1 of the entire stake of the network. As we have
distributed the stake equally, we can therefore say that the object
needs to reach 50%+1 of the nodes or (n/2) + 1, to transmit this
far, we can remove 1 transmission as it is the first node to broadcast
the object and therefore inherently knows of it, and therefore we
must make n/2 transmissions. We should also consider how quickly
these transmissions will be made, to consider this let’s represent
the nodes as a connected graph where the edges attached to every
node are about equal. We can say that in this graph the rate at
which the message propagates from any node is exponential, that
is, it increases by a power of 2 for every round where a round is 1
interval where every node that is aware of the message transmits it
across every edge they have, therefore, the number of rounds needed
to propagate this message to half the graph, given the amount of
nodes on the graph n is (log2n)− 1.

8.4 BCRA Security

We should now consider whether BCRA is secure. In order to de-
termine whether BCRA is secure we should determine the ways in
which an attacker could hope to gain a material advantage with the

42

BCRA system, there are two ways this could happen:

• The attacker causes a list to be populated with nobody except
attackers.

• The attacker invalidates a previous list.

For the first attack this is impossible without a 100% stake, this is
because regardless of the stake held by the attacker assuming that
stake is less than 100%, any honest node may take the attackers
list, append some honest items with a stake and broadcast it. This
list will, obviously, have a higher stake than the attackers because it
will have the attackers stake as a minimum and then any stake held
because of any honest nodes being known by any honest nodes. The
second attack is possible once the attacker holds a 50%+1 stake in
the network and can occur during the resolution phase where the
attackers confirm a list which wasn’t decided on, that is, in a worst
case scenario BCRA security fails when an attacker has a 50%+1
stake.

8.5 Multiparty Pin Seeding Performance

We will now discuss the performance of Multiparty Pin Seeding
(”MPS”). Pin Seeding completes when a list is created where the
weight of the list is at least 60% of the total weight, therefore, Pin
Seeding is dependant on how fast a pin is signed by a cumulative
amount of nodes that hold a 60% stake of the network. We will make
the same assumptions made when analyzing BCRA performance,
that is:

We will, for the purposes of this evaluation, assume that
the stake of the network is distributed approximately equally
across the network

...

let’s represent the nodes as a connected graph where the
edges attached to every node are about equal.

Our justifications for these assumptions are given in the BCRA Per-
formance section. Based on this, we can express the performance of
the Multiparty Pin Seeding algorithm as an expression of how many
transmissions must be made until a seed is created that is valid. A

43

transmission has the same meaning as is given in the BCRA Perfor-
mance section, that is a transmission is the sending of one message
from one peer to another peer.23 As the stake is distributed equally,
we can say that the object needs to reach 60% of the nodes or 0.6n.
To transmit this far, we remove 1 transmission for the first node to
create the pin and we therefore can say we make 0.6n− 1 transmis-
sions.

We should now further consider how quickly the transmissions
are made, we shall introduce the same idea of a round given in the
BCRA Performance section, that is, a period in which every node
that wishes to make a transmission makes a transmission. Based on
the assumptions we have made, we can say that for every round, the
amount of transmissions increases exponentially as does the amount
of nodes who have seen the pin. Importantly, unlike BCRA however,
the pin must be passed node to node, such that in reality every
node must be aware of every change to the pin. This is a limitation
on the performance of Multiparty Pin Seeding which is necessary
because each signature signs every signature before it as well as the
initialization vector. Therefore, we must first determine how fast
a single update to the pin can be seen by a node on the network
that can make its own update. To determine this, we must first
consider that a node can only sign a pin once, that is, as the pin
grows certain nodes will be unable to sign it as they have already
signed the pin. We can express the proportion of nodes able to sign
a pin with a stake s as available(s) = 1 − s because every node
that has stake may sign the pin. We should now express how many
rounds it will take for a network of n nodes to, on average, find a
node that is available. To do that, we should consider the graph of
the network itself, in this graph, nodes nearest to the current longest
pin (the ”head”) are the most likely to themselves have signed this
pin (because the holder of the head likely saw the updated pin from
them as the nearest neighbours). Therefore, we should express the
nodes that may sign the pin as, in a worst case scenario, the nodes
furthest away from the holder of the head. To do this, we must
first express how many rounds can be performed over a network
by considering the exponential propagation of transmissions over
rounds. In each round, the approximate number of nodes aware
of any message increases by a power of 2. Therefore, we can say

23A broadcast to n peers is n transmissions, one for each peer.

44

that, given a network of n nodes, the amount of rounds to reach the
entire network is log2n. We should now identify the population of a
network of size n which is likely able to sign the pin given the stake
already in the pin s. Based on the assumption of about equal stakes
given above, this is a = n ∗available(s). Given the total population
and the population available to sign the pin we can express the
number of rounds needed to reach this subset of the population as
dlog2(n−a)e. Finally, we can say that assuming around equal stake,
the amount of signatures in the pin should be 0.6n as this represents
around 60% stake.

Therefore, we can say that the total number of rounds, given an
amount of nodes n, is:

k = 0.6n
totalRounds =

∑k
i=0[dlog2(n− (n ∗ (1− i)))e]

8.6 Multiparty Pin Seeding Security

Recall that the objectives of Multiparty Pin Seeding are:

to create an algorithm whereby given some input content i
the algorithm produces an output which is unpredictable
for any one node or group of nodes that hold less than
50%+1 of the network stake, but is immutable in that it
is the only valid output and can be verified as such

We can break this down into two objectives of the algorithm and
then assess them independently, these are:

• (that) the algorithm produces an output which is unpredictable
for any one node or group of nodes that hold less than 50%+1
of the network stake.

• (that the algorithm is) immutable in that it is the only valid
output and can be verified as such.

8.6.1 Unpredictable output

The first part we should consider is whether the output is unpre-
dictable. It is important to first specifically define what we mean by
unpredictable, it is true that an attacker may be able to influence
part of a pin, naturally, by including their signature in it. However,
what we mean by unpredictability is that at least one bit in the pin

45

will be completely unknown to an attacker. We acknowledge that a
single bit is not enough unpredictability to deter an attacker, hence
we shall first define a parameter known as the ”bit threshold” used
to test whether a pin is unpredictable, that is, an attacker should
not be able to predict at least ”bit threshold” bits.

8.6.2 Bit Threshold

To decide on this threshold, we should consider the objective of the
attacker. An attacker wants to predict the output of the pin and
then use this knowledge to change the portion of the pin they can
influence in order to produce a pin that seeds the psuedorandom
number generator to select attackers, making the selection process
rigged in favour of the attacker. Hence, in order to do this an at-
tacker needs to conclude with certainty the contents of every bit
within the pin. This is because the attacker needs to publish their
segments of the pin, influenced to produce the seed they wish, dur-
ing pin construction. Hence, an attacker cannot wait for each node
where there is an unknown value to send that value or the attacker
will be unable to add to the pin themselves. We should first there-
fore consider the degree of certainty an attacker can have in their
conclusion given a certain bit threshold. Every bit the attacker is
unsure of has a 50% chance of being a 0 or a 1 respectively, hence,
the chance of the attacker guessing the entire bit threshold b, is
0.5b. We can graph the chance of an attacker guessing the entire
bit threshold therefore as shown in Figure 4. From this, we can
say that the chances of an attacker to predict the output if 8 bytes
are unknown is 0.564, which is a 1 in 18,446,744,073,709,551,616
chance. We consider this a reasonable enough threshold to deter
any attacker. Therefore, our bit threshold shall be 64.

Pin Definitions Now that we have defined how many bits we must
protect from being predictable by the attacker we must determine
the parts of the pin that could be made unpredictable. We will
explicitly rule out the initialization vector as a source of unpre-
dictability, because a system could use a predictable initialization
vector (such as counting upwards from 1, or a time-stamp). There-
fore, the only source of unpredictability is the signatures on the pin.
To determine how many bits each signature contains we will need

46

Figure 4: Graph of the chances of an attacker’s success in predicting every bit
within the bit threshold for a given pin.

to specify a cryptography system that these signatures use. To do
this, we will define the system used as the system that is used in
the DScript Java Client, that is ECDSA P256 24. In ECDSA P256
the length of the signature is 64 bytes (Adalier et al. n.d.), far be-
yond our bit threshold of 64 bits. Therefore, we can say at least one
signature in the final pin must be unpredictable to the attacker in
order for the system to be secure.

Necessary stake to defeat Recall that for a pin to be valid it must
have at least a 55% stake, therefore, an attacker cannot defeat Mul-
tiparty Pin Seeding without holding at least a 55% stake in the
network.

8.7 Overall Security

First, let us review the security of the DScript protocol. To do this,
we will consider the scenario for an attacker when attacking the

24ECDSA P256 means Elliptic Curve Digital Signature Algorithm (Adalier et al. n.d.) and
is implemented through the Google Tink libraries.

47

DScript protocol. Let’s introduce a state transition machine s, in
state 0, where the state transition function, f , contains f(s0, 1) →
{s2, 1}. Now, let us say an attacker wants to trick the network into
certifying a state transition of f(s0, 1) → {s1, 1},25 even though no
honest committee should ever conclude this. First, let us review
the overarching Delegated Proof of Stake system. This system is
vulnerable to attack if the attacker holds any more than 50%+1 of
the stake of the network, as at this point the attacker may attempt
to retroactively revert legitimate state transitions by voting them
away in conflicts, they may do this until they manage to create the
circumstances they desire. This is similar to the 50%+1 attack on
Proof of Work systems described in Nakamoto et al. 2008. Assuming
that honest nodes hold at least 50%+1 of the stake, the avenue
for the attacker to break the system is through an evil committee,
an evil committee is a committee of nodes where every node is a
cooperating attacker. This committee may certify any decision they
wish, including the otherwise illegal f(s0, 1)→ {s1, 1}. To consider
whether an attacker will succeed with this attack, we must define the
state in which an attacker succeeds. An attacker succeeds in their
attack if every member of the committee is a cooperating attacker
and fails if any member of the committee is not an attacker, this is
because regardless of attacker population, any one member of the
committee may block the agreement of the committee. We should
now consider the chances of the attacker to fill the committee with
exclusively cooperating attackers. To do this, we must consider
the stake of the attacker in proportion to the entire stake of the
network, s, where 0 ≤ s ≤ 1 and the size of the committee. In
DScript, the size of the committee is always up to 10 nodes, so that
is what we will be considering. It is also important to note that
nodes are not withdrawn from being selected when included in the
committee, but may be included any number of times, but will only
be a member once, this is described above in the random selection
algorithm section, and is to prevent an attack when the network is
in a state where few honest nodes hold large stakes. Therefore, the
chance of an attacker succeeding in populating the committee with
only cooperating attacks is:

chance = sn

25This is an illegal state transition but as not every node executes the state transition
function and instead relies on the result of the committee, the network may not be aware of
the fact that this state transition is illegal.

48

Figure 5: Graph of the chances of an attacker’s success in gaining an evil com-
mittee based on stake.

Where n is the amount of members to be selected for the com-
mittee.26

Therefore, we can graph the chances of an attacker succeeding
given their stake in the network as shown in Figure 5.

We can reverse this calculation in order to consider how much
stake is necessary for a given chance at an evil committee, c, as:

stake = 10
√
c

Based on this, we can see the stake needed for a 50% chance of
an evil committee is 10

√
0.5 which is 93.3% of the network. Further,

if the attacker holds a 50% stake in the network the chances they
produce an evil committee are 0.510 which is a 0.097% chance. The
lower the stake the lower the chances, with a 10% stake the chance
is 0.00000001%. This is an unreasonable barrier for any attacker, as
to break this system would require a sizable stake in the network.
Further, if this stake was obtained, an attacker may be harming
themselves by attacking the network with it, in LeMahieu 2018 Colin

26The amount of members is set to a goal of 10, but if any node is chosen twice, they are
only included once, hence the committee may be any number of nodes from 1 to 10. Every
time a node is selected after it’s first selection the committee size decreases by 1.

49

Lemahieu stated on the possibility of an attacker taking a large stake
of the network:

[those with more stake] ... are inherently incentivized to
maintain the honesty of the system or risk losing their
investment.

8.8 Overall Performance

We will now discuss the performance of the protocol. To consider the
performance of the overall protocol, we should recall how the overall
protocol operates. The DScript Protocol operates by selecting a set
absolute number of nodes (in our Java client, 10) who will certify a
result on behalf of the entire network. One of the most important
points to make in this regard is how our algorithm does not grow
in complexity as the network population increases, in comparison to
many other cryptocurrency networks. The amount of nodes selected
to perform expensive tasks in our network is always 10, hence, for
DScript, performance is indicated as O(1). This means our network
can scale practically forever without consequence to the underlying
protocol of the network.

8.9 Network Performance vs Ethereum

We will now compare the performance of our system versus the
performance of a State of the Art system, in this case Ethereum.
Ethereum is a decentralized computation system that uses a Proof of
Work Blockchain to secure itself. 27 Ethereum Decentralized Appli-
cations are written in EVM byte code and run on the Ethereum Vir-
tual Machine, a highly deterministic environment designed specifi-
cally for the Ethereum network. The system works largely the same
as systems like bitcoin described in Nakamoto et al. 2008 for consen-
sus, that is, using Proof of Work and difficulty to choose a chain. In
Ethereum, a Decentralized Application is created by including it in
a block on the blockchain and is made of a ”state” which comprises
the state of the Decentralized Application at a given point in time
and is made of the most recent transaction that modified the state
of the Decentralized Application as well as the EVM Source of the

27We would be amiss to point out that Ethereum is currently introducing a protocol called
Casper that uses Proof-of-Stake.

50

application. For example if I have a state transition machine with
state transition function f(s0, 1)− > (s1, 1), my decentralized appli-
cation is in state s0 and I wish to input 1, I create a transaction for
the decentralized application that references my already published
DApp on the network and includes my input, in this case 1. This
is then included in a block. When any node gets this block they
compute all inputs to decentralized applications contained therein,
that is, every node then computes that f(s0, 1)− > (s1, 1) and they
update the state of the application in their memory accordingly.
The problem with this is efficiency, naturally, we want to avoid run-
ning a piece of code more times then necessary yet in Ethereum
every single node must run every single input to every single DApp,
this is, predictably, very inefficient. The efficiency can be expressed
in reference to the amount of times the state transition function
is executed by the network, given a number of nodes n, as t = n.
Importantly from this, we can see that the rate of complexity of
execution of a DApp increases at a rate of O(n) on the Ethereum
network.

Now let us talk about the performance of the DScript system.
DScript applications are written in their own language, based off the
Ethereum EVM, called DDL (Deterministic Distributed Language),
while DDL has some changes from the EVM they are in essence
achieving the same objectives, creating a low level deterministic en-
vironment for execution of software. DScript applications further
have the same idea of state being recorded onto the blockchain.
Where DScript differs however is how state is recorded, let’s re-
call our example with Ethereum we gave above of a state transition
machine with the function f(s0, 1)− > (s1, 1). In DScript, the exe-
cution of this state transition function is delegated to a committee
of 10 nodes broadly representative of the nodes in the network by
stake. The block recorded in the blockchain is the inputs and unlike
Ethereum, the outputs of the execution of those inputs, certified by
the members of the committee and with the proofs with regards to
selection of those members (a reference to the BCRA List and the
pin from Multiparty Pin Seeding). Instead of executing the state
transition function themselves, each node instead simply verifies
that the committee is properly formed and unanimously decided,
and if so they accept the output without executing the input them-
selves. In our system, no state transition will be executed more than

51

10 times, t ≤ 10.28 For the purposes of this document, let us assume
that the state transition is executed the maximum number of times,
that is, 10.

We can now use the values we have calculated that reference the
efficiency of each solution by calculating the amount of times that
state transition function is executed overall by the entire network,
t in both cases, to determine whether DScript has performance im-
provements over Ethereum and if so, by how much (and this value
shall be referred to from hereon as the ”score” for each network).
Recall that we stated that the rate of increase of complexity and
therefore the score in Ethereum is O(n), therefore, we will compare
the rate of complexity at different baselines. We shall assume the
least efficient scenario for DScript, that is, 10 executions (except
where this is impossible in which case we assume every node). The
score therefore for Ethereum is ethScore(n) = n and for DScript
is dscriptScore(n) = min(n, 10). In both networks, the goal is in-
creased efficiency and so to minimize the score. We can see the
results of the calculation of the scores for each network in Figure 6.

We can see that efficiency is about equal until we exceed 10 nodes,
at which point the rate of increase of efficiency of DScript versus
Ethereum is equal to the amount of nodes in the network minus 10.
We can now calculate the improvement in efficiency in DScript as

improvement = ethScore(n)
dscriptScore(n)

and we can graph that as shown in

Figure 7.
As of the time of writing this document, the Node Population of

Ethereum is 8,718 nodes, 29 based on this, we can see the increases
of performance based on the current Ethereum node population is

ethScore(8718)
dscriptScore(8718)

which is 8718
10

which an improvement of 871.8 times.

This is a significant improvement in efficiency versus the Ethereum
network.

8.10 Network Security vs Ethereum

We will now describe the security of our network versus Ethereum.
Ethereum Security is based fundamentally on Proof of Work in the
same way as bitcoin, it fails if an attacker holds more than 50%+1 of

28A state transition may be executed less than 10 times as the same node may be selected
to be included in the committee many times as explained previously in this document.

29Sourced from https://www.ethernodes.org/network/1 at 08:54 GMT on the 20th of
March 2019.

52

https://www.ethernodes.org/network/1

Figure 6: Comparison of the efficiency ”score” of Ethereum versus DScript, the
lower line is DScript and the higher line is Ethereum. The higher the score the
lower the efficiency.

53

Figure 7: The rate of improvement in efficiency of DScript versus Ethereum
based on the efficiency score values described in Network Performance vs
Ethereum.

the computation power of the network. Ethereum however can never
suffer an attack where an attacker manages to convince the network
of an illegal state transition because every node on the network ex-
ecutes the state transition themselves in isolation. In DScript, we
have introduced a tiny chance of this happening and have used it
to reap performance benefits, in Ethereum the chance of an illegal
state transition being accepted is 0%. In DScript, the network would
accept an illegal state transition if an entire committee randomly se-
lected agreed to it, assuming that our random seed algorithm and
list population algorithm are secure (as described in previous sec-
tions) we can express the chance of an illegal state transition being
accepted as the cooperating attackers stake in the network s to the
power of the amount of nodes in the network n, such that the chance
c is c = sn, we previously described above how n is always 10, hence
the chance is c = s10, as shown in Figure 8. We can therefore say
that the stake needed by an attacker for a given chance c is s = 10

√
c.

From this, we can see that for an attacker to gain a 50% chance of
defeating the network they would need to hold 93.3% of the stake

54

Figure 8: Chance of an attacker succeeding in convincing a committee of an
illegal state transition.

in the network, this is an unreasonable barrier for any attacker. By
introducing and then mitigating a small risk into the algorithm, we
have gained very large performance benefits.

9 Conclusion

We will consider whether we have met our overall aim by individ-
ual evaluation of our objectives, we will then take into account our
progress on each objective to identify whether we have met our aim.
First, let us consider what we have achieved with this project, we
have independently developed 4 algorithms. The first algorithm we
developed was BCRA, which is novel and for the first time allows
nodes to come to rapid consensus around very large structures of
lists. The second algorithm we developed is Multiparty Pin Seeding
which joins a list of many algorithms that occupy the area of Multi-
party Coin Toss algorithms such as Beimel, Omri, and Orlov 2010.
The third algorithm is Lightweight Distributed Database, a simple
algorithm that saves nodes on our network disk space and our fourth

55

algorithm, is the DScript Algorthim and Protocol that allows creat-
ing a Decentralized Computer with a rate of complexity increase
in comparison to network population of O(1).

We will now review each of our objectives.

Undertake a background study to identify existing work,
identify the systems used by the state of the art and iden-
tify the caveats in performance of the state of the art.

We undertook a background study and identified existing work, this
is shown in depth in the Background section of this report. We
further identified where systems were used by the state of the art
and the caveats to their use.

Identify an approach which will give us results from which
we can draw rigorous conclusions.

In our Project Approach section we laid down the approach we
would take to this project and how we would validate our approach
throughout.

Design an algorithm that allows a decentralized network
of untrusted nodes to come to consensus around the end
state of a state transition machine given a start state and
input and that has a performance improvement over the
state of the art.

We designed the DScript Protocol in the DScript Protocol section,
a protocol for communication and agreement in a decentralized net-
work based on Delegated Proof of Stake and Psuedorandom Selec-
tion to ensure security. The DScript Protocol is one of few protocols
that achieve consensus in O(1) based on network population through
a combined system that designates an authority for a Proof of Au-
thority execution (other protocols that do this include Gilad et al.
2017). And we are the first protocol to apply this to decentralized
applications in a practical setting.

Design and implement software that shows the algorithms
described above in operation and shows the viability of
the algorithms in a solution.

We wrote the DScript Java Client, a program that implements the
DScript Protocol, the DScript Java Client worked as expected across

56

a simple network and this demonstrates the algorithms as viable.
While the client still requires some work to be completely finished,
we are satisfied that it implemented the core of our protocol.

Demonstrate the security of the algorithms described above
through empirical evaluation of such.

We evaluated the Security of the DScript Protocol in the Perfor-
mance and Security in Theory Section of this report, we considered
each major component and the overall security of the protocol.

Demonstrate the performance improvements of the algo-
rithms described above versus the state of the art through
empirical evaluation of such.

We evaluated the Performance of the DScript Protocol in the Per-
formance and Security in Theory Section of this report, considering
each major component and the overall performance improvement of
the protocol versus a state of the art protocol.
We have demonstrated the DScript Protocol’s Performance and Se-
curity through the Performance and Security evaluation we per-
formed, based on this, as well the fact that we have met all of
our objectives 30. Further, we have created an algorithm that is
much faster than the State of the Art (see Network Performance vs
Ethereum). Based on all of this, conclude that we have met our
overall aim.

9.1 Future Work

I believe that there are many further areas to explore to increase the
performance and security of this system and it’s privacy. I will now
talk about a few of the different areas I did not have the opportunity
to fully explore during this project but I plan to explore in the future.

9.1.1 Verifiable Random Proofs

In Gilad et al. 2017 it is shown that random committees can be
formed through Verifiable Random Proofs, this has a benefit over
our system in that in this system the members of the committee are
a secret until they have made their decision. This protects against

30Our last objective, to ”Evaluate the success of this project based on the security and
performance of the algorithms as described above.” is performed in this section.

57

attackers influencing or attacking members of the committee as they
make their decision. Although I have done no analysis of it as it is
outside the scope of this project, I think this would increase overall
security.

9.1.2 Privacy

One of the caveats of our system is that in our system, every node
sees every invocation or execution of a program. This means that
the system offers no privacy to it’s users. I think that there may be
some approaches to ensure that systems can be run on the network
without disclosing information about them, and I will describe the
two areas I am interested in exploring in this area below.

Homomorphic Encryption In 2019 Microsoft introduced SEAL. 31

SEAL is an ”easy-to-use homomorphic encryption library” (Chen,
Laine, and Player 2017), Homomorphic Encryption is described by
Microsoft as ”a new type of encryption technology that allows com-
putation to be directly on encrypted data, without requiring any
decryption in the process”. This could be used in our network to
protect user privacy by allowing operations to be performed on in-
puts that are encrypted in their entirety before being run on the
network. In this way, user privacy is preserved while we can prove
that the program acted in a certain way on the encrypted data.

Compartmentalization I had the idea for this sort of approach when
reading about the US Town of Oak Ridge, Tennessee. During the
Second World War, Oak Ridge was the site of part of the develop-
ment of the first ever nuclear weapons under the United States Man-
hattan Project (Olwell 2004). Due to the immense secrecy around
the creation of this weapon, the United States Federal Government
needed to ensure that information about what was being constructed
at Oak Ridge was not revealed to the enemy. In order to make re-
vealing this information harder, the United States instrumented a
policy of Heavy Compartmentalization. Heavy Compartmentaliza-
tion at Oak Ridge was a policy that each worker by themselves knew
very little about the overall work of the system due to their role be-
ing exceptionally limited in both task and information granted to

31https://www.microsoft.com/en-us/research/project/microsoft-seal/

58

https://www.microsoft.com/en-us/research/project/microsoft-seal/

them. For example, one employee was simply given the instructions
of ”hold this device up to these clothes and if you hear many clicks
tell this person”. The worker knew not why they were doing this or
what the device was, of course, we now know the device was measur-
ing radiation. This idea of giving many people small jobs that hold
no meaning by themselves but collectively cause something complex
to happen is an approach I believe could be explored for Execution
Secrecy. I believe it would be possible to develop an algorithm where
so long as a certain proportion of the nodes failed to cooperate in
discovering the overall secret, the overall operation being performed
by the nodes would remain a secret to everyone except the person
who wished it to be executed (the ”coordinator”).

59

References

Adalier, Mehmet et al. (n.d.). “Efficient and secure elliptic curve cryptography
implementation of Curve P-256”. In:

Ateniese, Giuseppe et al. (2014). “Proofs of space: When space is of the essence”.
In: International Conference on Security and Cryptography for Networks.
Springer, pp. 538–557.

Beimel, Amos, Eran Omri, and Ilan Orlov (2010). “Protocols for multiparty coin
toss with dishonest majority”. In: Annual Cryptology Conference. Springer,
pp. 538–557.

Blake-Wilson, Simon et al. (2006). Elliptic curve cryptography (ECC) cipher
suites for transport layer security (TLS). Tech. rep.

Buterin, Vitalik (2013). What Proof of Stake is and why it matters.
Buterin, Vitalik and Virgil Griffith (2017). “Casper the friendly finality gadget”.

In: arXiv preprint arXiv:1710.09437.
Chen, Hao, Kim Laine, and Rachel Player (2017). “Simple encrypted arithmetic

library-SEAL v2. 1”. In: International Conference on Financial Cryptogra-
phy and Data Security. Springer, pp. 3–18.

Dang, Quynh H (2015). Secure hash standard. Tech. rep.
Dannen, Chris (2017). Introducing Ethereum and Solidity. Springer.
De Angelis, Stefano et al. (2018). “Pbft vs proof-of-authority: applying the cap

theorem to permissioned blockchain”. In: Sapienza University of Rome, Uni-
versity of Southampton, pp. 3–6.

Douceur, John R (2002). “The sybil attack”. In: International workshop on
peer-to-peer systems. Springer, pp. 251–260.

Dziembowski, Stefan et al. (2015). “Proofs of space”. In: Annual Cryptology
Conference. Springer, pp. 585–605.

Gilad, Yossi et al. (2017). “Algorand: Scaling byzantine agreements for cryp-
tocurrencies”. In: Proceedings of the 26th Symposium on Operating Systems
Principles. ACM, pp. 51–68.

Grigg, Ian (n.d.). EOS-An introduction. url: https://cryptomonday.de/wp-
content/uploads/2018/04/EOS_An_Introduction.pdf.

Hertig, Alyssa (2017). Ethereum + Lightning? Buterin and Poon Unveil ‘Plasma’
Scaling Plan. url: https://www.coindesk.com/ethereum-lightning-
buterin-poon-unveil-plasma-scaling-plan.

Kiayias, Aggelos et al. (2017). “Ouroboros: A provably secure proof-of-stake
blockchain protocol”. In: Annual International Cryptology Conference. Springer,
pp. 357–388.

King, Sunny and Scott Nadal (2012). “Ppcoin: Peer-to-peer crypto-currency
with proof-of-stake”. In: self-published paper, August 19.

Krejcie, Robert V and Daryle W Morgan (1970). “Determining sample size for
research activities”. In: Educational and psychological measurement 30.3,
pp. 607–610.

Lamport, Leslie, Robert Shostak, and Marshall Pease (1982). “The Byzantine
generals problem”. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 4.3, pp. 382–401.

60

https://cryptomonday.de/wp-content/uploads/2018/04/EOS_An_Introduction.pdf
https://cryptomonday.de/wp-content/uploads/2018/04/EOS_An_Introduction.pdf
https://www.coindesk.com/ethereum-lightning-buterin-poon-unveil-plasma-scaling-plan
https://www.coindesk.com/ethereum-lightning-buterin-poon-unveil-plasma-scaling-plan

LeMahieu, Colin (2017). “Raiblocks: A feeless distributed cryptocurrency net-
work”. In: URL https://raiblocks. net/media/RaiBlocks Whitepaper English.
pdf.

— (2018). “Nano: A feeless distributed cryptocurrency network”. In: Nano [On-
line resource]. URL: https://nano. org/en/whitepaper (date of access: 24.03.
2018).

Morgan, JP (2016). “Quorum whitepaper”. In: New York: JP Morgan Chase.
Murphy, Hannah (2018). The rise and fall of Ethereum. url: https://www.

ft.com/content/a8d2c280-d2b6-11e8-a9f2-7574db66bcd5.
Nakamoto, Satoshi et al. (2008). “Bitcoin: A peer-to-peer electronic cash sys-

tem”. In: bitcoin.org.
O’Dwyer, Karl J and David Malone (2014). “Bitcoin mining and its energy

footprint”. In: 25th IET Irish Signals Systems Conference 2014 and 2014
China-Ireland International Conference on Information and Communica-
tions Technologies (ISSC 2014/CIICT 2014), 2014 p. 280 – 285.

Olwell, Russell B (2004). At Work in the Atomic City: A Labor and Social
History of Oak Ridge, Tennessee. Univ. of Tennessee Press.

Parity (2019). Proof-of-Authority Chains. url: https://wiki.parity.io/

Proof-of-Authority-Chains.
Park, Sunoo et al. (2015). “Spacecoin: A cryptocurrency based on proofs of

space”. In: 2015: 528, Tech. Rep.
Poon, Joseph and Vitalik Buterin (2017). “Plasma: Scalable autonomous smart

contracts”. In: White paper, pp. 1–47.
Poon, Joseph and Thaddeus Dryja (2016). The bitcoin lightning network: Scal-

able off-chain instant payments.
Popov, Serguei (2016). The tangle. url: http://www.descryptions.com/

Iota.pdf.
Ray, James and The Ethereum Authors (2018). Hard Problems of Cryptocur-

rencies. url: https://github.com/ethereum/wiki/wiki/Problems.
Ren, Ling and Srinivas Devadas (2016). “Proof of space from stacked expanders”.

In: Theory of Cryptography Conference. Springer, pp. 262–285.
Ryan, Mark (2006). Digital Cash. https : / / www . cs . bham . ac . uk / ~mdr /

teaching/modules06/netsec/lectures/DigitalCash.html. (Accessed on
03/04/2019).

Saleh, Fahad (2018). Blockchain without waste: Proof-of-stake. url: https:

//ssrn.com/abstract=3183935.
Sweet, Lucy (2019a). Deterministic Distributed Language. url: https://docs.

google.com/document/d/1hsDyAzdCx4PSHdfn86SM1sGgxkFhJmilMnYF5Pfjxnc/

edit.
— (2019b). DScript Network Design. url: https : / / docs . google . com /

document/d/1Fzb32T_Bn5XNLGWLbL5koCKj3gD2YgAJHRsrXKvAjQU/edit.
— (2019c). LDDB. url: https://drive.google.com/file/d/16Y4zzqieoLA9y6pCzmyTPPBFThurICB4/

view?usp=sharing.
Wensley, J. H. et al. (1978). “SIFT: Design and analysis of a fault-tolerant

computer for aircraft control”. In: Proceedings of the IEEE 66.10, pp. 1240–
1255. issn: 0018-9219. doi: 10.1109/PROC.1978.11114.

61

https://www.ft.com/content/a8d2c280-d2b6-11e8-a9f2-7574db66bcd5
https://www.ft.com/content/a8d2c280-d2b6-11e8-a9f2-7574db66bcd5
https://wiki.parity.io/Proof-of-Authority-Chains
https://wiki.parity.io/Proof-of-Authority-Chains
http://www.descryptions.com/Iota.pdf
http://www.descryptions.com/Iota.pdf
https://github.com/ethereum/wiki/wiki/Problems
https://www.cs.bham.ac.uk/~mdr/teaching/modules06/netsec/lectures/DigitalCash.html
https://www.cs.bham.ac.uk/~mdr/teaching/modules06/netsec/lectures/DigitalCash.html
https://ssrn.com/abstract=3183935
https://ssrn.com/abstract=3183935
https://docs.google.com/document/d/1hsDyAzdCx4PSHdfn86SM1sGgxkFhJmilMnYF5Pfjxnc/edit
https://docs.google.com/document/d/1hsDyAzdCx4PSHdfn86SM1sGgxkFhJmilMnYF5Pfjxnc/edit
https://docs.google.com/document/d/1hsDyAzdCx4PSHdfn86SM1sGgxkFhJmilMnYF5Pfjxnc/edit
https://docs.google.com/document/d/1Fzb32T_Bn5XNLGWLbL5koCKj3gD2YgAJHRsrXKvAjQU/edit
https://docs.google.com/document/d/1Fzb32T_Bn5XNLGWLbL5koCKj3gD2YgAJHRsrXKvAjQU/edit
https://drive.google.com/file/d/16Y4zzqieoLA9y6pCzmyTPPBFThurICB4/view?usp=sharing
https://drive.google.com/file/d/16Y4zzqieoLA9y6pCzmyTPPBFThurICB4/view?usp=sharing
https://doi.org/10.1109/PROC.1978.11114

Wood, Gavin (2014). Ethereum: A secure decentralised generalised transaction
ledger. url: https://ethereum.github.io/yellowpaper/paper.pdf.

62

https://ethereum.github.io/yellowpaper/paper.pdf

10 Appendix A - Personal Reflection

10.1 Reflection on Project

I have undertaken a project jointly of research into new and in-
novative consensus mechanisms and development of practical soft-
ware. My specific knowledge of this topic area pushed my decision to
choose this for my Final Year Project as I have been working on this
idea for quite some time, formerly under the name of ”Sequestered
Witness”. Most of the problems I have encountered throughout this
project have been technical in nature, at one point I have had to
manually patch a third party library to ensure I could use it in my
project. 32 If I had a chance to change how I undertook this project,
I would have likely spent longer designing the project, as of the time
of writing a team at MIT including Silvio Micali have proposed that
they have found a solution for random selection that requires no con-
sensus mechanism. I am very interested in this system and I regret
not contacting them directly when I first started this project to see
if there would be a chance to have an exchange of ideas with them
about this area of research. The DScript Java Client does not im-
plement the entirety of the DScript Protocol, however this would
have taken too long for the timescale of this FYP. The Client al-
ready has 153 classes and around 10,000 lines of code. Further the
client supports the fundamental consensus systems of the protocol.
I intend to improve the client in the future to support the entire
protocol.

10.2 Personal Reflection

While overall I am happy with how I have worked on this project
and what I have delivered, I would have preferred to have delivered
some of the extensions to the DScript Protocol in a working fash-
ion which I have not had the chance to add to the software. While
the core of the DScript Protocol works in the software, subchaining
among other systems is highly unstable. I unfortunately did not
have enough time to stabilize this feature. Further, I would have
liked to have revisited how networking works on the DScript net-
work, while I really like the system I made with the layers of Cluster,

32https://github.com/perwendel/spark/pull/1092 - This patch is forced into my version
of spark through Gradle by including my modification in my project files on compile time.

63

https://github.com/perwendel/spark/pull/1092

Message and Application I think there is room to make the Clus-
ter and Message layers more efficient and to use less traffic in their
operation. I should have done more research into Multiparty Coin
Toss algorithms before making MPPS, MPPS is inferior to systems
such as Beimel, Omri, and Orlov 2010. In the future, I may move
to the system described in that paper.

11 Appendix B - Licenses

Uri locations of the licenses for all third party packages are given
below:

• Google Guava

https://github.com/google/guava/blob/master/COPYING

• JSON in Java (org.json)

https://github.com/stleary/JSON-java/blob/master/LICENSE

• Spark - a tiny web framework for Java 8

https://github.com/perwendel/spark/blob/master/NOTICE

• Apache HttpClient

http://hc.apache.org/httpclient-3.x/license.html

• Apache Commons IO

http://www.apache.org/licenses/LICENSE-2.0.html

• Apache Commons Validator

http://www.apache.org/licenses/LICENSE-2.0.html

• Google Tink

https://github.com/google/tink/blob/master/LICENSE

• Apache Freemarker

https://freemarker.apache.org/docs/app_license.html

• Zxing (”Zebra Crossing”) Barcode Scanner

https://github.com/zxing/zxing/blob/master/LICENSE

• JUnit

https://junit.org/junit4/license.html

64

https://github.com/google/guava/blob/master/COPYING
https://github.com/stleary/JSON-java/blob/master/LICENSE
https://github.com/perwendel/spark/blob/master/NOTICE
http://hc.apache.org/httpclient-3.x/license.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/google/tink/blob/master/LICENSE
https://freemarker.apache.org/docs/app_license.html
https://github.com/zxing/zxing/blob/master/LICENSE
https://junit.org/junit4/license.html

• JUnit Toolbox

https://github.com/MichaelTamm/junit-toolbox/blob/master/

LICENSE.md

These locations were correct at time of submission.

12 Appendix C - Ethical Approval

[graphic redacted from public copy]

65

https://github.com/MichaelTamm/junit-toolbox/blob/master/LICENSE.md
https://github.com/MichaelTamm/junit-toolbox/blob/master/LICENSE.md

This was my Bachelors dissertation / Final Year Project to con-
clude my 3 year Computer Science degree at Brunel University Lon-
don. I recieved an overall degree class of First Class Honours.

66

	Contents
	Acknowledgments
	Declaration
	Introduction
	On the Byzantine General's Problem and Decentralized Systems
	From currency to computation
	Performance pain
	Room to Grow

	Aims and Objectives
	Project Approach
	Literature Review
	Algorithm Design
	Proof in Theory
	Implementation Design
	Algorithm Implementation
	Overall Review

	Background
	The need for Byzantine Fault Tolerance
	Fault Tolerant Data Structures
	Blockchain
	The Tangle
	Block-Lattice

	Approaches to consensus agreement
	Traditional
	Algorand

	Consensus agreement systems
	Proof of Work
	Proof of Space
	Proof of Authority
	Proof of Stake
	Delegated Proof of Stake

	Summary of Literature Review

	Project Approach
	Algorithm Design
	Validation in Theory
	Application Design
	Validation in Practice
	Overall Review

	DScript Protocol
	Delegated Proof of Stake
	Conflict Resolution

	Block-Lattice
	Representative Population Sampling
	Representative Committee
	State Transition Agreement
	BCRA
	Overall Goal
	Broadcast
	Consolidate
	Resolve
	Affirm
	Automation

	Multiparty Pin Seeding
	Threshold and Pin Finality
	0.6 Threshold

	Lightweight Distributed Database
	Direct Fetching
	Indirect Finding

	Execution Delegation
	The simple approach
	The approach taken

	Execution
	Deterministic Distributed Language
	Anatomy of a Decentralized Application
	Cost
	Gossip
	Execution by the Committee
	Extra Instructions

	DScript Java Client
	Networking
	Cluster
	Message
	Application

	Cryptography
	Encryption

	Bootstrapping
	Interface
	Web Panel

	Caveats

	Evaluation
	Committee Consensus Performance
	Committee Consensus Security
	BCRA Performance
	BCRA Security
	Multiparty Pin Seeding Performance
	Multiparty Pin Seeding Security
	Unpredictable output
	Bit Threshold

	Overall Security
	Overall Performance
	Network Performance vs Ethereum
	Network Security vs Ethereum

	Conclusion
	Future Work
	Verifiable Random Proofs
	Privacy

	Appendix A - Personal Reflection
	Reflection on Project
	Personal Reflection

	Appendix B - Licenses
	Appendix C - Ethical Approval

